A square matrix
![$A=[A_1\;A_2\;\cdots\;A_n]$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uJIBchk_R9wIwDFvmXDMSapj5pMtCqLEtGKN_TQP8A-3WbeR4X_wNa2XQwgEzVNCDQLYeqv-fFwLmBPxJOnBk0C73SSJDNMHBwTKcJpy6M-JaIQBhCtilr7xer-8J6EWDf66myXN20=s0-d)
(

for the ith column vector of

) is
unitary if its inverse is equal to its conjugate transpose, i.e.,

. In particular, if a unitary matrix is real

, then

and it is
orthogonal. Both the column and row vectors (

) of a unitary or orthogonal matrix are orthogonal (perpendicular to each other) and normalized (of unit length), or
orthonormal, i.e., their inner product satisfies:
These

orthonormal vectors can be used as the basis vectors of the n-dimensional vector space.Any unitary (orthogonal) matrix

can define a
unitary (orthogonal) transform of a vector
![$X=[x_1,\cdots,x_n]^T$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sX8CX5x7JO4uiKwipVvZwTRR3VwPAY3f4B10LhxVnJiWnGDL6elEIUopvfrTrbOLlDhQCgUFZjJBeKx_In5GQyLnFThvcokPicTIq1P-PA1l9AwFb3voxqTmUwcTlhDKfDuAe3PKAd=s0-d)
:
No comments:
Post a Comment