Monday, July 18, 2011

How to learn Lecture Notes on Signals and Systems pdf


Lecture Notes on Signals and Systems 

  • Lecture Note 1, State-space models; block diagrams 
  • Lecture Note 2, Conversions between time and frequncy domains 
  • Lecture Note 3, Solution of linear 1st-order differential equations in the time domain 
  • Lecture Note 4, Solution of linear higher-order differential equations in the time domain; definition of matrix exponentials 
  • Lecture Note 5, Solution of linear systems in the time and frequency domains; evaluation of matrix exponentials; impulse response; convolution operator 
  • Lecture Note 6, The superposition principle 
  • Lecture Note 7, Modeling electrical circuits in the time domain 
  • Lecture Note 8, Matrix calculus I, solution of linear systems of equations, inverses, adjugates, determinants of matrices 
  • Lecture Note 9, Matrix calculus II, solution of multiple linear systems of equations, matrix multiplication, the transpose of a matrix, some matrix algebra rules
  • Lecture Note 10, Impulse response, step response, input response 
  • Lecture Note 11, BIBO stability, Lyapunov stability 
  • Lecture Note 12, Vector calculus: vector spaces, orthogonality, bases 
  • Lecture Note 13, Functional algebra: function spaces, orthogonality, bases 
  • Lecture Note 14, Generalized Fourier transforms 
  • Lecture Note 15, More about Fourier transforms
  • Lecture Note 16, Different representations of Fourier transform 
  • Lecture Note 17, Relationship between Fourier and Laplace transforms 
  • Lecture Note 18, Circuit analysis in the frequency domain 
  • Lecture Note 19, Circuit analysis in the frequency domain - addendum 
  • Lecture Note 20, Stability and continued fraction expansion (
  • Lecture Note 21, Routh-Hurwitz stability criterion 
  • Lecture Note 22, Exponential stability, parametric stability 
  • Lecture Note 23, Pole/zero locations for straight-line approximations of Bode plots 
  • Lecture Note 24, Similarity and duality transformations 
  • Lecture Note 25, Transformations to controller- and observer-canonical forms 
  • Lecture Note 26, Jordan-canonical form
  • Lecture Note 27, Eigenvalues and eigenvectors
  • Lecture Note 28, Transformation to Jordan-canonical form 
  • Lecture Note 29, Spectral decomposition, transcendental functions, Cayley-Hamilton theorem
  • Lecture Note 30, Sample/hold, digital/analog, and analog/digital circuits 
  • Lecture Note 31, Shannon's sampling theorem, z-transform 

3 comments:

Search This Blog